
Quantum confined Lorentz effect in a quantum wire
A. Balandin, and S. Bandyopadhyay

Citation: Journal of Applied Physics 77, 5924 (1995); doi: 10.1063/1.359173
View online: https://doi.org/10.1063/1.359173
View Table of Contents: http://aip.scitation.org/toc/jap/77/11
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1736894787/x01/AIP-PT/JAP_ArticleDL_032118/scilight717-1640x440.gif/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Balandin%2C+A
http://aip.scitation.org/author/Bandyopadhyay%2C+S
/loi/jap
https://doi.org/10.1063/1.359173
http://aip.scitation.org/toc/jap/77/11
http://aip.scitation.org/publisher/


Quantum confined Lorentz effect in a quantum wire 
A. Balandin and S. Bandyopacihyay 
Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 

(Received 15 December 1994; accepted for publication 13 February 1995) 

We have studied band-to-band optical magnetoabsorption in a semiconductor quantum wire 
subjected to a transverse magnetic field. The magnetic field induces a blueshift in the absorption 
peaks and makes the linewidth narrower. Furthermore, it quenches photoluminescence and 
absorption in much the same way as an electric field in the quantum confined Franz-Keldysh effect 
(QCFKE). We call this the quantum confined Lorentz effect (QCLE), since it is the Lorentz force 
skewing the electron and hole wavefunctions in the quantum wire that causes the quenching. The 
QCLE has an advantage over the QCFKE in that it may be observed even in quantum wires with 
relatively leaky barriers. The other important difference is that while the QCFKE is accompanied by 
a redshift in the absorption or photoluminescence peak, the QCLE is accompanied by a 
blueshift. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The effect of a transverse electric field on the optical 
absorption and photoluminescence in a quantum confined 
system is a well-researched topic.’ The most widely studied 
effect in this category is the quantum confined Stark effect 
(related to excitonic absorption and photoluminescence) and 
the quantum confined Franz-Keldysh effect (QCFKE) re- 
lated to band-to-band absorption in the absence of excitonic 
effects and electron-hole correlation. These effects have led 
to the conception and demonstration of novel quantum effect 
optical devices such as high-speed light modulators and the 
self-electro-optic-device (SEED),2 besides being utilized to 
study myriad aspects of the physics of quantum confined 
structures. Despite their remarkable success however, both 
the QCSE and the QCFKE have a practical shortcoming. 
They are often difficult to observe in material systems such 
as AlGaAs/GaAs heterostructures because the heterobaniers 
that confine electrons and holes are not high enough to pre- 
vent leakage of electrons and holes (either by tunneling or by 
thermionic emission) when an electric field is applied per- 
pendicular to the heterointerfaces. Indeed, it has been 
pointed out that the electronic and hole states in a quantum 
confined system are not true bound states in the presence of 
an electric field since the particles can always lower their 
energy by tunneling out of the well3 A high enough electric 
field tilts the barriers of a quantum well thereby allowing 
photogenerated electrons and holes to escape. Escape from 
the wells reduces the effective lifetime of the electron and 
hole states thereby reducing the absorption strength and 
broadening the transitions. 

To mitigate this problem, we have studied the magnetic 
analog of the QCFKE in a quantum wire. This is illustrated 
in Fig. 1. A transverse magnetic field applied in the z direc- 
tion exerts a Lorentz force on photogenerated electrons and 
holes whose wavefunctions are skewed along they direction. 
The Lorentz force acts in the same sense on both electrons 
and holes (as in the Hall effect), but since the effective 
masses of these two particles are different, the amount of 
skewing is’different for them. This reduces the overlap be- 

tween the electron and hole wavefunctions and results in the 
quenching of absorption or photoluminescence. 

The advantage of using a magnetic field instead of an 
electric field is that the electron and hole states remain true 
bound states in the presence of the field. Neither particle can 
lower their energies by tunneling out of the well. Of course, 
the skewing of the wavefunctions will give rise to a self- 
consistent electric field whose effect can be understood by 
solving the Schrodinger and Poisson equations simulta- 
neously. The self-consistent field will tilt the potential barrier 
slightly and give rise to a finite lifetime of the states. Since 
the self-consistent correction is quite small in most cases; the 
lifetimes of the electron and hole states are still very long. 
Consequently, we expect to see sharper transitions and in- 
creased quantum efficiency of radiative transitions. 

In this paper, we have calculated the band-to-band ab- 
sorption coefficient for a GaAs quantum wire in a magnetic 
field as a function of incident photon energy. In the next 
section, we describe the theoretical formulation, followed by 
results. Finally, in Sec. IV, we present the conclusions. 

II. THEORY 

We consider a quantum wire as shown in Fig. 1. The 
thickness along the z direction is so small that for the range 
of photon energies considered, we need to consider only the 
lowest electron and the highest heavy-hole subband along 
the z direction in calculating the absorption. However, we 
will consider multiple transverse subbands along the y direc- 
tion (for both electrons and holes) since the width is much 
larger than the thickness. Electronic subbands along this di- 
rection will be labeled by the index ve and hole subbands 
(regardless of whether they are light or heavy holes) by the 
index vh . 

A magnetic field is applied along the z direction which 
quenches the band-to-band absorption and photolumines- 
cence. It must be pointed out that electrons and holes that are 
photoexcited to states at the bottom of the subbands (the 
Landau levels) will not experience a Lorentz force since 
these states have no resultant velocity (they correspond to 
closed cyclotron orbits). Therefore, these states will not be 

. 
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FIG. 1. Illustration of the quantum confined Lorentz effect in a quantum 
wire. (a) The y components of the electron and hole wavefunctions in the 
absence of any magnetic field, and (b) the same wavefunctions when a 
sufficiently strong magnetic field is applied along the z direction. The wave- 
functions are skewed by the Lorentz force towards the same edge of the wire 
but by different amounts because of the difference in the effective masses of 
electrons and holes. This skewing reduces the overlap between the wave- 
functions and quenches absorption or photoluminescence. The slight tilting 
of the potential along they direction is not due to any external electric field, 
but because of the self-consistent electric field generated by the space 
charges. The inset shows a quantum wire with the coordinate axes. 

skewed and will not exhibit the QCLE. It is only the states 
with a non-zero slope in Fig. 2 (the so-called “traversing 
states” and “skipping orbits” or “edge states” with a non- 
zero velocity) which will experience a Lore&z force and 
exhibit the QCLE. The magnetic field will also have another 
major effect. Since it increases the energy separation be- 
tween the quantum wire subbands, it will induce a blueshift 
in the absorption or photoluminescence. Moreover, since the 
wavefunctions of electronic and hole subbands with different 
transverse indices are no longer orthogonal, a magnetic field 
can induce previously forbidden transitions between such 
subbands. Such transitions however will still be compara- 
tively weak. 

In explaining the physical origin of the quenching, we 
have invoked the concept of a classical Lorentz force acting 
on the electrons and holes. This is a useful picture, but it has 
one problem. It may appear that the electronic wavefunction 
will be skewed more than the hole wavefunction if the elec- 
trons are lighter than the holes. Actually, the opposite is true. 
The particles with the lighter effective mass will have a 
“stiffer” wavefunction since the energy separation between 
successive subbands is larger. Viewed in terms of perturba- 
tion theory, this means that a larger perturbation will be re- 
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FIG. 2. Energy vs wave vector relation for electrons and heavy holes in a 
GaAs quantum wire of width 1009 A. The wave vector is along the free 
propagation direction. The results are shown for magnetic flux densities of 0 
and 1 T. In this diagram, the bulk band gap E, plus the z-direction confine- 
ment energy is assumed to be zero for the sake of clarity. 

quired to skew the wavefunctions of the lighter particles by a 
given amount. With this sole exception, the comparison with 
a classical Lorentz force is otherwise a useful analogy. 

The absorption coefficient a( v, , l/h , fi w) for transitions 
from a hole subband with index vh to an electronic subband 
with index v, as a function of the unpolarized incident pho- 
ton energy fiw is given by4 

xc ~~~,w~,(kml, 
k L 

t 1) 

where the quantity P is the momentum matrix element, 1 is 
the wave vector along the free propagation direction (x di- 
rection), W is the quantum wire width, 4 is the electronic 
charge, L is the normalizing length, E is the dielectric con- 
stant, q,(y) is the y component of the electron or hole wave- 
function in the vth subband, and c is the speed of light in 
vacuum. The above expression of course neglects excitonic 
effects and dressing of states (many-body effects). It also 
assumes the applicability of the effective mass approxima- 
tion. Since we are interested in merely the band-to-band ab- 
sorption, and the width of the quantum wire is several lattice 
spacings, this approach is permissible. Excitonic effects will 
be described in a future publication. 

The above equation can be rewritten as 

X 
II 

ow~l;o~nuhtY)~Y 2z (2) 
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(3) 
where 

AEve,vh=AEve,vh (k) =EveW) -E,&k) 

and @iis the joint density of states defined by 

*@Eve ,,MA&e ,v,) = % dk. 

(4) 

(5) 

Equations (2)-(5) can be combined to yield 

(Y(v,,v~,nw)= 

2 

x ~v,ty)dy 

XS@.o-[E,+EO,e+EO,h]), (6) 

where E, is the material band gap and Ez is the energy at the 
bottom of the r&h subband (measured from the bulk 
conduction-band edge for electrons and bulk valence-band 
edge for holes, plus the z-direction confinement energies). 

To calculate a, we need to know the dispersion relations 
(energy versus wave vector) E,,(k) and E J k) in a quantum 
wire subjected to a magnetic field. These, and the wavefunc- 
tions $, are obtained by solving the Schrodinger equation in 
a quantum wire subjected to a magnetic field. 

The time-independent nonrelativistic Schrijdinger equa- 
tion describing electrons or holes in a quantum wire sub- 
jected to a magnetic field is 

[~~(P-eA)12 
2m” ~tx,~)+Vt~)Ij/tx,~)=Erlrtx,~), (7) 

where u is the Pauli spin matrix, V(y) is the confining po- 
tential in the y direction, and A is the magnetic vector po- 
tential. The above equation was solved5 neglecting spin ef- 
fects and assuming hardwall boundary conditions on V(y). 
For a Landau gauge 

A=(-By,O,O), (8) 

where B is the magnetic flux density, the solution is 

(9) 

where the y component of the wavefunction $,(y) obeys the 
equation 

-k2&y)=0 (10) 

with 1 being the magnetic length given by 1 = dm 
It should be noted that the electron cannot lower its en- 

ergy by tunneling out of the quantum wire since the energy is 
not lower at y-+m unlike in the case of an electric field.3 
Therefore, the electron and hole hybrid magnetoelectric 
states in a quantum wire (i.e., the eigenstates of the above 
equation) can be treated as true bound states. 
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FIG. 3. The energy difference between electron- and heavy-hole subbands 
AEv ,v (k)[=E, (k)-E,(k)] as a function of the wave vector k in a 
1000’ x GaAs quantum wire. The bulk band gap Eg plus the z-direction 
confinement energy is again assumed to be zero for clarity. 

To find the wavefunction &y) of the magnetoelectric 
states, we have to solve the above equation subject to the 
boundary conditions 

qb(y=d)=+(y=-d)=O. (11) 

This is accomplished using a finite difference scheme as out- 
lined in Ref. 5. The solution does not incorporate space- 
charge effects since the Poisson equation is not solved simul- 
taneously. Once the eigenequation is solved, we can also find 
the energy-wave vector relations.5 These relations are plotted 
in Fig. 2. From these relations, we obtain AEVe +, vs k as 
shown in Fig. 3 and finally the joint density of states Bas a 
function of k or AE,, ,Vh as defined by Eq. (5). The latter is 
shown in Fig. 4. Once these quantities are obtained, we can 
find the absorption coefficient from Eq. (6). 

III. RESULTS 

We consider a GaAs quantum wire of width 1000 A 
along the y direction. In Fig. 5, we show the dependence of 
the overlap integral IJ~@~(y) @,,(y)dy12 on photon energy 
for various electron and heavy-hole subbands at a magnetic 
flux density of 1 T. In the absence of any magnetic field, 
transitions are allowed from the mth heavy-hole subband to 
the nth electronic subband only if m=rz. This follows from 
the orthogonality of the wavefunctions for m # n. A mag- 
netic field breaks this orthogonality by skewing the wave- 
functions and therefore allows previously forbidden transi- 
tions (m # n). However, it also weakens allowed transitions 
(m = n) because it decreases the overlap from its value of 
unity. 

It must be understood that a magnetic field alone is not 
sufficient to guarantee any skewing. The skewing takes place 
because of the Lorentz force which is proportional to the 
product of the magnetic flux density and the particle velocity. 
Consequently, wavefunctions of states at the bottom of any 
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FIG. 4. The joint density of states 9 as a function of AE, ,“~. 

electronic subband or at the top of any hole subband is not 
skewed by any magnetic field since these states have a zero 
velocity and experience no Lorentz force. Therefore, a mag- 
netic force has no effect on transitions that involve subband 
extrema. Consequently, the overlap is still unity for m=n 
transitions (and zero for m # n transitions) at photon energies 
corresponding to transitions between subband extrema. Only 
at photon energies away from these values does the overlap 
integral change in a magnetic field. This is clearly seen in 
Fig. 5(a). 

The sharp decrease in the overlap integral (for m=n. 
transitions) with increasing photon energy in a magnetic field 
is a consequence of the fact that increasing photon energy 
excites electrons and holes to higher energy states in a sub- 
band and these states have higher velocities (see Fig. 2). 
Consequently they experience a stronger Lorentz force and 
skew more. This rapidly decreases the overlap integrals. The 
same physics explains why the overlap integrals increase 
rapidly with increasing photon energy for m # n. This is also 
seen in Fig. 5(a). 

The rapid decrease of the overlap with increasing photon 
energy (for m = n transitions) causes the absorption intensity 
for ‘Yillowed” transitions to decrease more rapidly with in- 
creasing photon energy than would have been otherwise al- 
lowed by the mere energy dependence of the density of states 
in a quasi-one-dimensional system. Consequently, the ab- 
sorption peaks become sharper and narrower in energy. An 
additional cause of this narrowing is that a magnetic field 
makes the density of states peaks more narrow also. In the 
limit of an infinite magnetic field, all electron and hole states 
will condense into Landau levels and the density of states 
will become a series of &function spikes with ideally’zero 
width. 

The magnetoabsorption as a function of photon energy 
?io is shown in Fig. 6. Apart from the narrowing of the peaks 
with increasing magnetic field, the other interesting feature 
to note is the blueshift in the peaks with increasing magnetic 
field. Quite large blueshifts (-9 meV at 10 T) can be ob- 
tained which is larger than the thermal energy at 77 K. This 
shift can be utilized in magneto-optic light modulators. The 
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FIG. 5. (a) The overlap integral IJ~@~~(y)&,(y)dyI* as a function of 
photon energy fiw for different electron- and heavy-hole transitions. Again 
the bulk band gap plus the z-direction confinement energy have been as- 
sumed to be zero. (b) The probability density I&y) 1’ of an electronic state in 
the lowest electron subband 4 meV above the bulk conduction-band edge at 
a magnetic flux density of 1 T, and (c) the probability density of a heavy- 
hole state in the highest heavy-hole subband 4 meV below the bulk valence- 
band edge at a magnetic flux density of 1 T. 
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FIG. 6. The magnetoabsorption as a function of incident photon energy for 
various electron-hole transitions. The results are shown at 0 and 1 T. The 
curve labeled e 1 -hh 1 refers to transitions between the highest heavy-hole 
subband and the lowest electronic subband, the curve labeled e 1 -h/z2 refers 
to transitions between the second highest heavy-hole subband and the lowest 
electronic subband, etc. 

magnitude of this shift is less than the redshift that is usually 
obtained in QCSE,6 but the fact that it is blue- as opposed to 
a redshift is important. Producing a blueshift is considered 
desirable in some circumstances since it may cause lower 
insertion losses in optoelectronic circuits. In the past, com- 
plicated structures have been proposed to produce blueshifts 
in the conventional QCSE.7 In contrast, our structure is very 
simple; it is a generic quantum wire. 

IV. CONCLUSION 

In conclusion, we have studied the magnetic field analog 
of QCFKE, namely the QCLE, in a quantum wire. The latter 

5928 J. Appl. Phys., Vol. 77, No. 11, 1 June 1995 

has certain advantages over the QCFKE. It can be observed 
in quantum wires with relatively leaky barriers. In QCFKE, 
an electric field causes electrons and holes to tunnel out of 
the well by tilting the barrier, but a magnetic field has no 
such effect. In fact, a magnetic field introduces additional 
confinement for electrons and holes trapped in cyclotron or- 
bits. These states of course do not exhibit the QCLE since 
they have no resultant drift velocity, but they nonetheless 
exhibit a blueshift in the absorption. In principle, an arbi- 
trarily large blueshift can be obtained by applying an arbi- 
trarily large magnetic field without having to worry about 
any effect on the lifetime of the states. This may ultimately 
lead to an extension of the dynamic range of optical modu- 
lators employing QCSE as stronger magnetic fields become 
available. 
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